advanced-evaluation
This skill should be used when the user asks to "implement LLM-as-judge", "compare model outputs", "create evaluation rubrics", "mitigate evaluation bias", or mentions direct scoring, pairwise comparison, position bias, evaluation pipelines, or automated quality assessment.
bdi-mental-states
This skill should be used when the user asks to "model agent mental states", "implement BDI architecture", "create belief-desire-intention models", "transform RDF to beliefs", "build cognitive agent", or mentions BDI ontology, mental state modeling, rational agency, or neuro-symbolic AI integration.
context-compression
This skill should be used when the user asks to "compress context", "summarize conversation history", "implement compaction", "reduce token usage", or mentions context compression, structured summarization, tokens-per-task optimization, or long-running agent sessions exceeding context limits.
context-degradation
This skill should be used when the user asks to "diagnose context problems", "fix lost-in-middle issues", "debug agent failures", "understand context poisoning", or mentions context degradation, attention patterns, context clash, context confusion, or agent performance degradation. Provides patterns for recognizing and mitigating context failures.
context-fundamentals
This skill should be used when the user asks to "understand context", "explain context windows", "design agent architecture", "debug context issues", "optimize context usage", or discusses context components, attention mechanics, progressive disclosure, or context budgeting. Provides foundational understanding of context engineering for AI agent systems.
context-optimization
This skill should be used when the user asks to "optimize context", "reduce token costs", "improve context efficiency", "implement KV-cache optimization", "partition context", or mentions context limits, observation masking, context budgeting, or extending effective context capacity.
evaluation
This skill should be used when the user asks to "evaluate agent performance", "build test framework", "measure agent quality", "create evaluation rubrics", or mentions LLM-as-judge, multi-dimensional evaluation, agent testing, or quality gates for agent pipelines.
memory-systems
This skill should be used when the user asks to "implement agent memory", "persist state across sessions", "build knowledge graph", "track entities", or mentions memory architecture, temporal knowledge graphs, vector stores, entity memory, or cross-session persistence.
multi-agent-patterns
This skill should be used when the user asks to "design multi-agent system", "implement supervisor pattern", "create swarm architecture", "coordinate multiple agents", or mentions multi-agent patterns, context isolation, agent handoffs, sub-agents, or parallel agent execution.
project-development
This skill should be used when the user asks to "start an LLM project", "design batch pipeline", "evaluate task-model fit", "structure agent project", or mentions pipeline architecture, agent-assisted development, cost estimation, or choosing between LLM and traditional approaches.
tool-design
This skill should be used when the user asks to "design agent tools", "create tool descriptions", "reduce tool complexity", "implement MCP tools", or mentions tool consolidation, architectural reduction, tool naming conventions, or agent-tool interfaces.
ralph-copywriter
Use this skill when the user asks to "analyze my content", "learn my writing style", "research competitors", "find content angles", "improve my blog", "write like me", "embody my brand voice", or mentions content strategy, voice analysis, competitive research, or iterative content improvement.
book-sft-pipeline
End-to-end system for creating supervised fine-tuning datasets from books and training style-transfer models. Covers text extraction, intelligent segmentation, synthetic instruction generation, Tinker-compatible output, LoRA training, and validation.
context-compression
Design and evaluate context compression strategies for long-running agent sessions. Use when agents exhaust memory, need to summarize conversation history, or when optimizing tokens-per-task rather than tokens-per-request.
evaluation
Build evaluation frameworks for agent systems. Use when testing agent performance, validating context engineering choices, or measuring improvements over time.
project-development
Design and build LLM-powered projects from ideation through deployment. Use when starting new agent projects, choosing between LLM and traditional approaches, or structuring batch processing pipelines.
tool-design
Design tools that agents can use effectively, including when to reduce tool complexity. Use when creating, optimizing, or reducing agent tool sets.