llava
Large Language and Vision Assistant. Enables visual instruction tuning and image-based conversations. Combines CLIP vision encoder with Vicuna/LLaMA language models. Supports multi-turn image chat, visual question answering, and instruction following. Use for vision-language chatbots or image understanding tasks. Best for conversational image analysis.
openai-assistants
|
senior-prompt-engineer
World-class prompt engineering skill for LLM optimization, prompt patterns, structured outputs, and AI product development. Expertise in Claude, GPT-4, prompt design patterns, few-shot learning, chain-of-thought, and AI evaluation. Includes RAG optimization, agent design, and LLM system architecture. Use when building AI products, optimizing LLM performance, designing agentic systems, or implementing advanced prompting techniques.
prompt-enhancer
Prompt engineering and optimization for AI/LLMs. Capabilities: transform unclear prompts, reduce token usage, improve structure, add constraints, optimize for specific models, backward-compatible rewrites. Actions: improve, enhance, optimize, refactor, compress prompts. Keywords: prompt engineering, prompt optimization, token efficiency, LLM prompt, AI prompt, clarity, structure, system prompt, user prompt, few-shot, chain-of-thought, instruction tuning, prompt compression, token reduction, prompt rewrite, semantic preservation. Use when: improving unclear prompts, reducing token consumption, optimizing LLM outputs, restructuring verbose requests, creating system prompts, enhancing prompt clarity.
multi-modal
Multi-modal prompting with vision, audio, and document understanding