Agent Skills: Context Engineering

>-

UncategorizedID: mrgoonie/claudekit-skills/context-engineering

Install this agent skill to your local

pnpm dlx add-skill https://github.com/mrgoonie/claudekit-skills/tree/HEAD/.claude/skills/context-engineering

Skill Files

Browse the full folder contents for context-engineering.

Download Skill

Loading file tree…

.claude/skills/context-engineering/SKILL.md

Skill Metadata

Name
context-engineering
Description
>-

Context Engineering

Context engineering curates the smallest high-signal token set for LLM tasks. The goal: maximize reasoning quality while minimizing token usage.

When to Activate

  • Designing/debugging agent systems
  • Context limits constrain performance
  • Optimizing cost/latency
  • Building multi-agent coordination
  • Implementing memory systems
  • Evaluating agent performance
  • Developing LLM-powered pipelines

Core Principles

  1. Context quality > quantity - High-signal tokens beat exhaustive content
  2. Attention is finite - U-shaped curve favors beginning/end positions
  3. Progressive disclosure - Load information just-in-time
  4. Isolation prevents degradation - Partition work across sub-agents
  5. Measure before optimizing - Know your baseline

Quick Reference

| Topic | When to Use | Reference | |-------|-------------|-----------| | Fundamentals | Understanding context anatomy, attention mechanics | context-fundamentals.md | | Degradation | Debugging failures, lost-in-middle, poisoning | context-degradation.md | | Optimization | Compaction, masking, caching, partitioning | context-optimization.md | | Compression | Long sessions, summarization strategies | context-compression.md | | Memory | Cross-session persistence, knowledge graphs | memory-systems.md | | Multi-Agent | Coordination patterns, context isolation | multi-agent-patterns.md | | Evaluation | Testing agents, LLM-as-Judge, metrics | evaluation.md | | Tool Design | Tool consolidation, description engineering | tool-design.md | | Pipelines | Project development, batch processing | project-development.md |

Key Metrics

  • Token utilization: Warning at 70%, trigger optimization at 80%
  • Token variance: Explains 80% of agent performance variance
  • Multi-agent cost: ~15x single agent baseline
  • Compaction target: 50-70% reduction, <5% quality loss
  • Cache hit target: 70%+ for stable workloads

Four-Bucket Strategy

  1. Write: Save context externally (scratchpads, files)
  2. Select: Pull only relevant context (retrieval, filtering)
  3. Compress: Reduce tokens while preserving info (summarization)
  4. Isolate: Split across sub-agents (partitioning)

Anti-Patterns

  • Exhaustive context over curated context
  • Critical info in middle positions
  • No compaction triggers before limits
  • Single agent for parallelizable tasks
  • Tools without clear descriptions

Guidelines

  1. Place critical info at beginning/end of context
  2. Implement compaction at 70-80% utilization
  3. Use sub-agents for context isolation, not role-play
  4. Design tools with 4-question framework (what, when, inputs, returns)
  5. Optimize for tokens-per-task, not tokens-per-request
  6. Validate with probe-based evaluation
  7. Monitor KV-cache hit rates in production
  8. Start minimal, add complexity only when proven necessary

Scripts