Back to tags
Tag

Agent Skills with tag: FAIR-data

3 skills match this tag. Use tags to discover related Agent Skills and explore similar workflows.

lamindb

This skill should be used when working with LaminDB, an open-source data framework for biology that makes data queryable, traceable, reproducible, and FAIR. Use when managing biological datasets (scRNA-seq, spatial, flow cytometry, etc.), tracking computational workflows, curating and validating data with biological ontologies, building data lakehouses, or ensuring data lineage and reproducibility in biological research. Covers data management, annotation, ontologies (genes, cell types, diseases, tissues), schema validation, integrations with workflow managers (Nextflow, Snakemake) and MLOps platforms (W&B, MLflow), and deployment strategies.

FAIR-databiological-ontologiesworkflow-automationdata-management
ovachiever
ovachiever
81

instrument-data-to-allotrope

Convert laboratory instrument output files (PDF, CSV, Excel, TXT) to Allotrope Simple Model (ASM) JSON format or flattened 2D CSV. Use this skill when scientists need to standardize instrument data for LIMS systems, data lakes, or downstream analysis. Supports auto-detection of instrument types. Outputs include full ASM JSON, flattened CSV for easy import, and exportable Python code for data engineers. Common triggers include converting instrument files, standardizing lab data, preparing data for upload to LIMS/ELN systems, or generating parser code for production pipelines.

file-conversionscientific-data-formatsFAIR-dataLIMS
anthropics
anthropics
12020

lamindb

This skill should be used when working with LaminDB, an open-source data framework for biology that makes data queryable, traceable, reproducible, and FAIR. Use when managing biological datasets (scRNA-seq, spatial, flow cytometry, etc.), tracking computational workflows, curating and validating data with biological ontologies, building data lakehouses, or ensuring data lineage and reproducibility in biological research. Covers data management, annotation, ontologies (genes, cell types, diseases, tissues), schema validation, integrations with workflow managers (Nextflow, Snakemake) and MLOps platforms (W&B, MLflow), and deployment strategies.

single-cell-rna-seqdata-warehouseFAIR-datadata-lineage
K-Dense-AI
K-Dense-AI
3,233360