motif-scanning
This skill identifies the locations of known transcription factor (TF) binding motifs within genomic regions such as ChIP-seq or ATAC-seq peaks. It utilizes HOMER to search for specific sequence motifs defined by position-specific scoring matrices (PSSMs) from known motif databases. Use this skill when you need to detect the presence and precise genomic coordinates of known TF binding motifs within experimentally defined regions such as ChIP-seq or ATAC-seq peaks.
track-generation
This skill generates normalized BigWig (.bw) tracks (and/or fold-change tracks) from BAM files for ATAC-seq and ChIP-seq visualization. It handles normalization (RPM or fold-change) and Tn5 offset correction automatically. Use this skill when you have filtered and generated the clean BAM file (e.g. `*.filtered.bam`).
peak-calling
Perform peak calling for ChIP-seq or ATAC-seq data using MACS2, with intelligent parameter detection from user feedback. Use it when you want to call peaks for ChIP-seq data or ATAC-seq data.
differential-region-analysis
The differential-region-analysis pipeline identifies genomic regions exhibiting significant differences in signal intensity between experimental conditions using a count-based framework and DESeq2. It supports detection of both differentially accessible regions (DARs) from open-chromatin assays (e.g., ATAC-seq, DNase-seq) and differential transcription factor (TF) binding regions from TF-centric assays (e.g., ChIP-seq, CUT&RUN, CUT&Tag). The pipeline can start from aligned BAM files or a precomputed count matrix and is suitable whenever genomic signal can be summarized as read counts per region.
atac-footprinting
This skill performs transcription factor (TF) footprint analysis using TOBIAS on ATAC-seq data. It corrects Tn5 sequence bias, quantifies TF occupancy at motif sites, generates footprint scores, and optionally compares differential TF binding across conditions.
known-motif-enrichment
This skill should be used when users need to perform known motif enrichment analysis on ChIP-seq, ATAC-seq, or other genomic peak files using HOMER (Hypergeometric Optimization of Motif EnRichment). It identifies enrichment of known transcription factor binding motifs from established databases in genomic regions.
nf-core
Run nf-core bioinformatics pipelines (rnaseq, sarek, atacseq) on sequencing data. Use when analyzing RNA-seq, WGS/WES, or ATAC-seq data—either local FASTQs or public datasets from GEO/SRA. Triggers on nf-core, Nextflow, FASTQ analysis, variant calling, gene expression, differential expression, GEO reanalysis, GSE/GSM/SRR accessions, or samplesheet creation.
deeptools
NGS analysis toolkit. BAM to bigWig conversion, QC (correlation, PCA, fingerprints), heatmaps/profiles (TSS, peaks), for ChIP-seq, RNA-seq, ATAC-seq visualization.