biomni
Autonomous biomedical AI agent framework for executing complex research tasks across genomics, drug discovery, molecular biology, and clinical analysis. Use this skill when conducting multi-step biomedical research including CRISPR screening design, single-cell RNA-seq analysis, ADMET prediction, GWAS interpretation, rare disease diagnosis, or lab protocol optimization. Leverages LLM reasoning with code execution and integrated biomedical databases.
pytdc
Therapeutics Data Commons. AI-ready drug discovery datasets (ADME, toxicity, DTI), benchmarks, scaffold splits, molecular oracles, for therapeutic ML and pharmacological prediction.
clinical-decision-support
Generate professional clinical decision support (CDS) documents for pharmaceutical and clinical research settings, including patient cohort analyses (biomarker-stratified with outcomes) and treatment recommendation reports (evidence-based guidelines with decision algorithms). Supports GRADE evidence grading, statistical analysis (hazard ratios, survival curves, waterfall plots), biomarker integration, and regulatory compliance. Outputs publication-ready LaTeX/PDF format optimized for drug development, clinical research, and evidence synthesis.
pyhealth
Comprehensive healthcare AI toolkit for developing, testing, and deploying machine learning models with clinical data. This skill should be used when working with electronic health records (EHR), clinical prediction tasks (mortality, readmission, drug recommendation), medical coding systems (ICD, NDC, ATC), physiological signals (EEG, ECG), healthcare datasets (MIMIC-III/IV, eICU, OMOP), or implementing deep learning models for healthcare applications (RETAIN, SafeDrug, Transformer, GNN).
pathml
Computational pathology toolkit for analyzing whole-slide images (WSI) and multiparametric imaging data. Use this skill when working with histopathology slides, H&E stained images, multiplex immunofluorescence (CODEX, Vectra), spatial proteomics, nucleus detection/segmentation, tissue graph construction, or training ML models on pathology data. Supports 160+ slide formats including Aperio SVS, NDPI, DICOM, OME-TIFF for digital pathology workflows.
biomni
Autonomous biomedical AI agent framework for executing complex research tasks across genomics, drug discovery, molecular biology, and clinical analysis. Use this skill when conducting multi-step biomedical research including CRISPR screening design, single-cell RNA-seq analysis, ADMET prediction, GWAS interpretation, rare disease diagnosis, or lab protocol optimization. Leverages LLM reasoning with code execution and integrated biomedical databases.