scvi-tools
This skill should be used when working with single-cell omics data analysis using scvi-tools, including scRNA-seq, scATAC-seq, CITE-seq, spatial transcriptomics, and other single-cell modalities. Use this skill for probabilistic modeling, batch correction, dimensionality reduction, differential expression, cell type annotation, multimodal integration, and spatial analysis tasks.
umap-learn
UMAP dimensionality reduction. Fast nonlinear manifold learning for 2D/3D visualization, clustering preprocessing (HDBSCAN), supervised/parametric UMAP, for high-dimensional data.
clustering
Discover patterns in unlabeled data using clustering, dimensionality reduction, and anomaly detection
Dimensionality Reduction
Reduce feature dimensionality using PCA, t-SNE, and feature selection for feature reduction, visualization, and computational efficiency
umap-learn
UMAP dimensionality reduction. Fast nonlinear manifold learning for 2D/3D visualization, clustering preprocessing (HDBSCAN), supervised/parametric UMAP, for high-dimensional data.