dspy
Build complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
prompt-enhancer
Prompt engineering and optimization for AI/LLMs. Capabilities: transform unclear prompts, reduce token usage, improve structure, add constraints, optimize for specific models, backward-compatible rewrites. Actions: improve, enhance, optimize, refactor, compress prompts. Keywords: prompt engineering, prompt optimization, token efficiency, LLM prompt, AI prompt, clarity, structure, system prompt, user prompt, few-shot, chain-of-thought, instruction tuning, prompt compression, token reduction, prompt rewrite, semantic preservation. Use when: improving unclear prompts, reducing token consumption, optimizing LLM outputs, restructuring verbose requests, creating system prompts, enhancing prompt clarity.
prompt-engineering-patterns
Master advanced prompt engineering techniques to maximize LLM performance, reliability, and controllability in production. Use when optimizing prompts, improving LLM outputs, or designing production prompt templates.
prompt-engineering-patterns
Master advanced prompt engineering techniques to maximize LLM performance, reliability, and controllability in production. Use when optimizing prompts, improving LLM outputs, or designing production prompt templates.