aeon
This skill should be used for time series machine learning tasks including classification, regression, clustering, forecasting, anomaly detection, segmentation, and similarity search. Use when working with temporal data, sequential patterns, or time-indexed observations requiring specialized algorithms beyond standard ML approaches. Particularly suited for univariate and multivariate time series analysis with scikit-learn compatible APIs.
machine-learning
Supervised/unsupervised learning, model selection, evaluation, and scikit-learn. Use for building classification, regression, or clustering models.
Classification Modeling
Build binary and multiclass classification models using logistic regression, decision trees, and ensemble methods for categorical prediction and classification
scikit-survival
Comprehensive toolkit for survival analysis and time-to-event modeling in Python using scikit-survival. Use this skill when working with censored survival data, performing time-to-event analysis, fitting Cox models, Random Survival Forests, Gradient Boosting models, or Survival SVMs, evaluating survival predictions with concordance index or Brier score, handling competing risks, or implementing any survival analysis workflow with the scikit-survival library.
umap-learn
UMAP dimensionality reduction. Fast nonlinear manifold learning for 2D/3D visualization, clustering preprocessing (HDBSCAN), supervised/parametric UMAP, for high-dimensional data.
aeon
This skill should be used for time series machine learning tasks including classification, regression, clustering, forecasting, anomaly detection, segmentation, and similarity search. Use when working with temporal data, sequential patterns, or time-indexed observations requiring specialized algorithms beyond standard ML approaches. Particularly suited for univariate and multivariate time series analysis with scikit-learn compatible APIs.