19773 Skills Available

Find awesome
Agent Skills

Agent-Skills.md is a agent skills marketplace, to find the right agent skills for you.

Popular searches

subagent-driven-development

Use when executing implementation plans with independent tasks in the current session

davila7
davila7
19,6461,834

sentencepiece

Language-independent tokenizer treating text as raw Unicode. Supports BPE and Unigram algorithms. Fast (50k sentences/sec), lightweight (6MB memory), deterministic vocabulary. Used by T5, ALBERT, XLNet, mBART. Train on raw text without pre-tokenization. Use when you need multilingual support, CJK languages, or reproducible tokenization.

davila7
davila7
19,6461,834

nemo-evaluator-sdk

Evaluates LLMs across 100+ benchmarks from 18+ harnesses (MMLU, HumanEval, GSM8K, safety, VLM) with multi-backend execution. Use when needing scalable evaluation on local Docker, Slurm HPC, or cloud platforms. NVIDIA's enterprise-grade platform with container-first architecture for reproducible benchmarking.

davila7
davila7
19,6461,834

voice-ai-development

Expert in building voice AI applications - from real-time voice agents to voice-enabled apps. Covers OpenAI Realtime API, Vapi for voice agents, Deepgram for transcription, ElevenLabs for synthesis, LiveKit for real-time infrastructure, and WebRTC fundamentals. Knows how to build low-latency, production-ready voice experiences. Use when: voice ai, voice agent, speech to text, text to speech, realtime voice.

davila7
davila7
19,6461,834

evaluating-llms-harness

Evaluates LLMs across 60+ academic benchmarks (MMLU, HumanEval, GSM8K, TruthfulQA, HellaSwag). Use when benchmarking model quality, comparing models, reporting academic results, or tracking training progress. Industry standard used by EleutherAI, HuggingFace, and major labs. Supports HuggingFace, vLLM, APIs.

davila7
davila7
19,6461,834

ai-product

Every product will be AI-powered. The question is whether you'll build it right or ship a demo that falls apart in production. This skill covers LLM integration patterns, RAG architecture, prompt engineering that scales, AI UX that users trust, and cost optimization that doesn't bankrupt you. Use when: keywords, file_patterns, code_patterns.

davila7
davila7
19,6461,834

axolotl

Expert guidance for fine-tuning LLMs with Axolotl - YAML configs, 100+ models, LoRA/QLoRA, DPO/KTO/ORPO/GRPO, multimodal support

davila7
davila7
19,6461,834

social-content

When the user wants help creating, scheduling, or optimizing social media content for LinkedIn, Twitter/X, Instagram, TikTok, Facebook, or other platforms. Also use when the user mentions 'LinkedIn post,' 'Twitter thread,' 'social media,' 'content calendar,' 'social scheduling,' 'engagement,' or 'viral content.' This skill covers content creation, repurposing, and platform-specific strategies.

davila7
davila7
19,6461,834

moe-training

Train Mixture of Experts (MoE) models using DeepSpeed or HuggingFace. Use when training large-scale models with limited compute (5× cost reduction vs dense models), implementing sparse architectures like Mixtral 8x7B or DeepSeek-V3, or scaling model capacity without proportional compute increase. Covers MoE architectures, routing mechanisms, load balancing, expert parallelism, and inference optimization.

davila7
davila7
19,6461,834

speculative-decoding

Accelerate LLM inference using speculative decoding, Medusa multiple heads, and lookahead decoding techniques. Use when optimizing inference speed (1.5-3.6× speedup), reducing latency for real-time applications, or deploying models with limited compute. Covers draft models, tree-based attention, Jacobi iteration, parallel token generation, and production deployment strategies.

davila7
davila7
19,6461,834

sglang

Fast structured generation and serving for LLMs with RadixAttention prefix caching. Use for JSON/regex outputs, constrained decoding, agentic workflows with tool calls, or when you need 5× faster inference than vLLM with prefix sharing. Powers 300,000+ GPUs at xAI, AMD, NVIDIA, and LinkedIn.

davila7
davila7
19,6461,834

evaluating-code-models

Evaluates code generation models across HumanEval, MBPP, MultiPL-E, and 15+ benchmarks with pass@k metrics. Use when benchmarking code models, comparing coding abilities, testing multi-language support, or measuring code generation quality. Industry standard from BigCode Project used by HuggingFace leaderboards.

davila7
davila7
19,6461,834

d3-viz

Creating interactive data visualisations using d3.js. This skill should be used when creating custom charts, graphs, network diagrams, geographic visualisations, or any complex SVG-based data visualisation that requires fine-grained control over visual elements, transitions, or interactions. Use this for bespoke visualisations beyond standard charting libraries, whether in React, Vue, Svelte, vanilla JavaScript, or any other environment.

davila7
davila7
19,6461,834

game-audio

Game audio principles. Sound design, music integration, adaptive audio systems.

davila7
davila7
19,6461,834

scroll-experience

Expert in building immersive scroll-driven experiences - parallax storytelling, scroll animations, interactive narratives, and cinematic web experiences. Like NY Times interactives, Apple product pages, and award-winning web experiences. Makes websites feel like experiences, not just pages. Use when: scroll animation, parallax, scroll storytelling, interactive story, cinematic website.

davila7
davila7
19,6461,834

ray-train

Distributed training orchestration across clusters. Scales PyTorch/TensorFlow/HuggingFace from laptop to 1000s of nodes. Built-in hyperparameter tuning with Ray Tune, fault tolerance, elastic scaling. Use when training massive models across multiple machines or running distributed hyperparameter sweeps.

davila7
davila7
19,6461,834

api-documentation-generator

Generate comprehensive, developer-friendly API documentation from code, including endpoints, parameters, examples, and best practices

davila7
davila7
19,6461,834

knowledge-distillation

Compress large language models using knowledge distillation from teacher to student models. Use when deploying smaller models with retained performance, transferring GPT-4 capabilities to open-source models, or reducing inference costs. Covers temperature scaling, soft targets, reverse KLD, logit distillation, and MiniLLM training strategies.

davila7
davila7
19,6461,834

deepspeed

Expert guidance for distributed training with DeepSpeed - ZeRO optimization stages, pipeline parallelism, FP16/BF16/FP8, 1-bit Adam, sparse attention

davila7
davila7
19,6461,834

training-llms-megatron

Trains large language models (2B-462B parameters) using NVIDIA Megatron-Core with advanced parallelism strategies. Use when training models >1B parameters, need maximum GPU efficiency (47% MFU on H100), or require tensor/pipeline/sequence/context/expert parallelism. Production-ready framework used for Nemotron, LLaMA, DeepSeek.

davila7
davila7
19,6461,834

pytorch-lightning

High-level PyTorch framework with Trainer class, automatic distributed training (DDP/FSDP/DeepSpeed), callbacks system, and minimal boilerplate. Scales from laptop to supercomputer with same code. Use when you want clean training loops with built-in best practices.

davila7
davila7
19,6461,834

agent-tool-builder

Tools are how AI agents interact with the world. A well-designed tool is the difference between an agent that works and one that hallucinates, fails silently, or costs 10x more tokens than necessary. This skill covers tool design from schema to error handling. JSON Schema best practices, description writing that actually helps the LLM, validation, and the emerging MCP standard that's becoming the lingua franca for AI tools. Key insight: Tool descriptions are more important than tool implementa

davila7
davila7
19,6461,834

long-context

Extend context windows of transformer models using RoPE, YaRN, ALiBi, and position interpolation techniques. Use when processing long documents (32k-128k+ tokens), extending pre-trained models beyond original context limits, or implementing efficient positional encodings. Covers rotary embeddings, attention biases, interpolation methods, and extrapolation strategies for LLMs.

davila7
davila7
19,6461,834

ray-data

Scalable data processing for ML workloads. Streaming execution across CPU/GPU, supports Parquet/CSV/JSON/images. Integrates with Ray Train, PyTorch, TensorFlow. Scales from single machine to 100s of nodes. Use for batch inference, data preprocessing, multi-modal data loading, or distributed ETL pipelines.

davila7
davila7
19,6461,834

datadog-cli

Datadog CLI for searching logs, querying metrics, tracing requests, and managing dashboards. Use this when debugging production issues or working with Datadog observability.

davila7
davila7
19,6461,834

dispatching-parallel-agents

Use when facing 2+ independent tasks that can be worked on without shared state or sequential dependencies

davila7
davila7
19,6461,834

huggingface-accelerate

Simplest distributed training API. 4 lines to add distributed support to any PyTorch script. Unified API for DeepSpeed/FSDP/Megatron/DDP. Automatic device placement, mixed precision (FP16/BF16/FP8). Interactive config, single launch command. HuggingFace ecosystem standard.

davila7
davila7
19,6461,834

model-merging

Merge multiple fine-tuned models using mergekit to combine capabilities without retraining. Use when creating specialized models by blending domain-specific expertise (math + coding + chat), improving performance beyond single models, or experimenting rapidly with model variants. Covers SLERP, TIES-Merging, DARE, Task Arithmetic, linear merging, and production deployment strategies.

davila7
davila7
19,6461,834

tensorrt-llm

Optimizes LLM inference with NVIDIA TensorRT for maximum throughput and lowest latency. Use for production deployment on NVIDIA GPUs (A100/H100), when you need 10-100x faster inference than PyTorch, or for serving models with quantization (FP8/INT4), in-flight batching, and multi-GPU scaling.

davila7
davila7
19,6461,834

crafting-effective-readmes

Use when writing or improving README files. Not all READMEs are the same — provides templates and guidance matched to your audience and project type.

davila7
davila7
19,6461,834

autonomous-agents

Autonomous agents are AI systems that can independently decompose goals, plan actions, execute tools, and self-correct without constant human guidance. The challenge isn't making them capable - it's making them reliable. Every extra decision multiplies failure probability. This skill covers agent loops (ReAct, Plan-Execute), goal decomposition, reflection patterns, and production reliability. Key insight: compounding error rates kill autonomous agents. A 95% success rate per step drops to 60% b

davila7
davila7
19,6461,834

content-research-writer

Assists in writing high-quality content by conducting research, adding citations, improving hooks, iterating on outlines, and providing real-time feedback on each section. Transforms your writing process from solo effort to collaborative partnership.

davila7
davila7
19,6461,834

context7-auto-research

Automatically fetch latest library/framework documentation for Claude Code via Context7 API

davila7
davila7
19,6461,834

llamaindex

Data framework for building LLM applications with RAG. Specializes in document ingestion (300+ connectors), indexing, and querying. Features vector indices, query engines, agents, and multi-modal support. Use for document Q&A, chatbots, knowledge retrieval, or building RAG pipelines. Best for data-centric LLM applications.

davila7
davila7
19,6461,834

langchain

Framework for building LLM-powered applications with agents, chains, and RAG. Supports multiple providers (OpenAI, Anthropic, Google), 500+ integrations, ReAct agents, tool calling, memory management, and vector store retrieval. Use for building chatbots, question-answering systems, autonomous agents, or RAG applications. Best for rapid prototyping and production deployments.

davila7
davila7
19,6461,834

autonomous-agent-patterns

Design patterns for building autonomous coding agents. Covers tool integration, permission systems, browser automation, and human-in-the-loop workflows. Use when building AI agents, designing tool APIs, implementing permission systems, or creating autonomous coding assistants.

davila7
davila7
19,6461,834

conversation-memory

Persistent memory systems for LLM conversations including short-term, long-term, and entity-based memory Use when: conversation memory, remember, memory persistence, long-term memory, chat history.

davila7
davila7
19,6461,834

grpo-rl-training

Expert guidance for GRPO/RL fine-tuning with TRL for reasoning and task-specific model training

davila7
davila7
19,6461,834

crewai-multi-agent

Multi-agent orchestration framework for autonomous AI collaboration. Use when building teams of specialized agents working together on complex tasks, when you need role-based agent collaboration with memory, or for production workflows requiring sequential/hierarchical execution. Built without LangChain dependencies for lean, fast execution.

davila7
davila7
19,6461,834

crewai

Expert in CrewAI - the leading role-based multi-agent framework used by 60% of Fortune 500 companies. Covers agent design with roles and goals, task definition, crew orchestration, process types (sequential, hierarchical, parallel), memory systems, and flows for complex workflows. Essential for building collaborative AI agent teams. Use when: crewai, multi-agent team, agent roles, crew of agents, role-based agents.

davila7
davila7
19,6461,834

model-pruning

Reduce LLM size and accelerate inference using pruning techniques like Wanda and SparseGPT. Use when compressing models without retraining, achieving 50% sparsity with minimal accuracy loss, or enabling faster inference on hardware accelerators. Covers unstructured pruning, structured pruning, N:M sparsity, magnitude pruning, and one-shot methods.

davila7
davila7
19,6461,834

Claude Code Guide

Master guide for using Claude Code effectively. Includes configuration templates, prompting strategies "Thinking" keywords, debugging techniques, and best practices for interacting with the agent.

davila7
davila7
19,6461,834

nemo-curator

GPU-accelerated data curation for LLM training. Supports text/image/video/audio. Features fuzzy deduplication (16× faster), quality filtering (30+ heuristics), semantic deduplication, PII redaction, NSFW detection. Scales across GPUs with RAPIDS. Use for preparing high-quality training datasets, cleaning web data, or deduplicating large corpora.

davila7
davila7
19,6461,834

launch-strategy

When the user wants to plan a product launch, feature announcement, or release strategy. Also use when the user mentions 'launch,' 'Product Hunt,' 'feature release,' 'announcement,' 'go-to-market,' 'beta launch,' 'early access,' 'waitlist,' or 'product update.' This skill covers phased launches, channel strategy, and ongoing launch momentum.

davila7
davila7
19,6461,834

segment-anything-model

Foundation model for image segmentation with zero-shot transfer. Use when you need to segment any object in images using points, boxes, or masks as prompts, or automatically generate all object masks in an image.

davila7
davila7
19,6461,834

3d-web-experience

Expert in building 3D experiences for the web - Three.js, React Three Fiber, Spline, WebGL, and interactive 3D scenes. Covers product configurators, 3D portfolios, immersive websites, and bringing depth to web experiences. Use when: 3D website, three.js, WebGL, react three fiber, 3D experience.

davila7
davila7
19,6461,834

theme-factory

Toolkit for styling artifacts with a theme. These artifacts can be slides, docs, reportings, HTML landing pages, etc. There are 10 pre-set themes with colors/fonts that you can apply to any artifact that has been creating, or can generate a new theme on-the-fly.

davila7
davila7
19,6461,834

ui-design-system

UI design system toolkit for Senior UI Designer including design token generation, component documentation, responsive design calculations, and developer handoff tools. Use for creating design systems, maintaining visual consistency, and facilitating design-dev collaboration.

davila7
davila7
19,6461,834

web-design-guidelines

Review UI code for Web Interface Guidelines compliance. Use when asked to "review my UI", "check accessibility", "audit design", "review UX", or "check my site against best practices".

davila7
davila7
19,6461,834

API Integration Specialist

Expert in integrating third-party APIs with proper authentication, error handling, rate limiting, and retry logic. Use when integrating REST APIs, GraphQL endpoints, webhooks, or external services. Specializes in OAuth flows, API key management, request/response transformation, and building robust API clients.

davila7
davila7
19,6461,834

Page 10 of 396 · 19773 results

Adoption

Agent Skills are supported by leading AI development tools.

FAQ

Frequently asked questions about Agent Skills.

01

What are Agent Skills?

Agent Skills are reusable, production-ready capability packs for AI agents. Each skill lives in its own folder and is described by a SKILL.md file with metadata and instructions.

02

What does this agent-skills.md site do?

Agent Skills is a curated directory that indexes skill repositories and lets you browse, preview, and download skills in a consistent format.

03

Where are skills stored in a repo?

By default, the site scans the skills/ folder. You can also submit a URL that points directly to a specific skills folder.

04

What is required inside SKILL.md?

SKILL.md must include YAML frontmatter with at least name and description. The body contains the actual guidance and steps for the agent.

05

How can I submit a repo?

Click Submit in the header and paste a GitHub URL that points to a skills folder. We’ll parse it and add any valid skills to the directory.