Back to authors
BIsnake2001

BIsnake2001

33 Skills published on GitHub.

UMR-LMR-PMD-detection

This pipeline performs genome-wide segmentation of CpG methylation profiles to identify Unmethylated Regions (UMRs), Low-Methylated Regions (LMRs), and Partially Methylated Domains (PMDs) using whole-genome bisulfite sequencing (WGBS) methylation calls. The pipeline provides high-resolution enhancer-like LMRs, promoter-associated UMRs, and large-scale PMDs characteristic of reprogramming, aging, or cancer methylomes, enabling integration with chromatin accessibility, TF binding, and genome architecture analyses.

UncategorizedView skill →

correlation-methylation-epiFeatures

This skill provides a complete pipeline for integrating CpG methylation data with chromatin features such as ATAC-seq signal, H3K27ac, H3K4me3, or other histone marks/TF signals.

UncategorizedView skill →

atac-footprinting

This skill performs transcription factor (TF) footprint analysis using TOBIAS on ATAC-seq data. It corrects Tn5 sequence bias, quantifies TF occupancy at motif sites, generates footprint scores, and optionally compares differential TF binding across conditions.

UncategorizedView skill →

regulatory-community-analysis-ChIA-PET

This skill performs protein-mediated regulatory community analysis from ChIA-PET datasets and provide a way for visualizing the communities. Use this skill when you have a annotated peak file (in BED format) from ChIA-PET experiment and you want to identify the protein-mediated regulatory community according to the BED and BEDPE file from ChIA-PET.

UncategorizedView skill →

peak-calling

Perform peak calling for ChIP-seq or ATAC-seq data using MACS2, with intelligent parameter detection from user feedback. Use it when you want to call peaks for ChIP-seq data or ATAC-seq data.

UncategorizedView skill →

hic-matrix-qc

This skill performs standardized quality control (QC) on Hi-C contact matrices stored in .mcool or .cool format. It computes coverage and cis/trans ratios, distance-dependent contact decay (P(s) curves), coverage uniformity, and replicate correlation at a chosen resolution using cooler and cooltools. Use it to assess whether Hi-C data are of sufficient quality for downstream analyses such as TAD calling, loop detection, and compartment analysis.

UncategorizedView skill →

nested-TAD-detection

This skill detects hierarchical (nested) TAD structures from Hi-C contact maps (in .cool or mcool format) using OnTAD, starting from multi-resolution .mcool files. It extracts a user-specified chromosome and resolution, converts the data to a dense matrix, runs OnTAD, and organizes TAD calls and logs for downstream 3D genome analysis.

UncategorizedView skill →

hic-compartment-shift

This skill performs A/B compartment shift analysis between two Hi-C samples.

UncategorizedView skill →

loop-annotation

This skill annotates chromatin loops, including enhancer/promoter assignments, CTCF-peak overlap. It automatically constructs enhancer and promoter sets when missing and outputs standardized loop categories.

UncategorizedView skill →

ATACseq-QC

Performs ATAC-specific biological validation. It calculates metrics unique to chromatin accessibility assays, such as TSS enrichment scores and fragment size distributions (nucleosome banding patterns). Use this skill when you have filtered BAM file and have called peak for the file. Do NOT use this skill for ChIP-seq data or general alignment statistics.

UncategorizedView skill →

ChIPseq-QC

Performs ChIP-specific biological validation. It calculates metrics unique to protein-binding assays, such as Cross-correlation (NSC/RSC) and FRiP. Use this when you have filtered the BAM file and called peaks for ChIP-seq data. Do NOT use this skill for ATAC-seq data or general alignment statistics.

UncategorizedView skill →

track-generation

This skill generates normalized BigWig (.bw) tracks (and/or fold-change tracks) from BAM files for ATAC-seq and ChIP-seq visualization. It handles normalization (RPM or fold-change) and Tn5 offset correction automatically. Use this skill when you have filtered and generated the clean BAM file (e.g. `*.filtered.bam`).

UncategorizedView skill →

replicates-incorporation

This skill manages experimental reproducibility, pooling, and consensus strategies. This skill operates in two distinct modes based on the input state. (1) Pre-Peak Calling (BAM Mode): It merges all BAMs, generate the merge BAM file to prepare for track generation and (if provided with >3 biological replicates) splits them into 2 balanced "pseudo-replicates" to prepare for peak calling. (2) Post-Peak Calling (Peak Mode): If provided with peak files (only support two replicates, derived from either 2 true replicates or 2 pseudo-replicates), it performs IDR (Irreproducible Discovery Rate) analysis, filters non-reproducible peaks, and generates a final "conservative" or "optimal" consensus peak set. Trigger this skill when you need to handle more than two replicates (creating pseudo-reps) OR when you need to merge peak lists.

UncategorizedView skill →

differential-region-analysis

The differential-region-analysis pipeline identifies genomic regions exhibiting significant differences in signal intensity between experimental conditions using a count-based framework and DESeq2. It supports detection of both differentially accessible regions (DARs) from open-chromatin assays (e.g., ATAC-seq, DNase-seq) and differential transcription factor (TF) binding regions from TF-centric assays (e.g., ChIP-seq, CUT&RUN, CUT&Tag). The pipeline can start from aligned BAM files or a precomputed count matrix and is suitable whenever genomic signal can be summarized as read counts per region.

UncategorizedView skill →

TF-differential-binding

The TF-differential-binding pipeline performs differential transcription factor (TF) binding analysis from ChIP-seq datasets (TF peaks) using the DiffBind package in R. It identifies genomic regions where TF binding intensity significantly differs between experimental conditions (e.g., treatment vs. control, mutant vs. wild-type). Use the TF-differential-binding pipeline when you need to analyze the different function of the same TF across two or more biological conditions, cell types, or treatments using ChIP-seq data or TF binding peaks. This pipeline is ideal for studying regulatory mechanisms that underlie transcriptional differences or epigenetic responses to perturbations.

UncategorizedView skill →

Page 2 of 2 · 33 results