awq-quantization
Activation-aware weight quantization for 4-bit LLM compression with 3x speedup and minimal accuracy loss. Use when deploying large models (7B-70B) on limited GPU memory, when you need faster inference than GPTQ with better accuracy preservation, or for instruction-tuned and multimodal models. MLSys 2024 Best Paper Award winner.
quantizing-models-bitsandbytes
Quantizes LLMs to 8-bit or 4-bit for 50-75% memory reduction with minimal accuracy loss. Use when GPU memory is limited, need to fit larger models, or want faster inference. Supports INT8, NF4, FP4 formats, QLoRA training, and 8-bit optimizers. Works with HuggingFace Transformers.
optimizing-attention-flash
Optimizes transformer attention with Flash Attention for 2-4x speedup and 10-20x memory reduction. Use when training/running transformers with long sequences (>512 tokens), encountering GPU memory issues with attention, or need faster inference. Supports PyTorch native SDPA, flash-attn library, H100 FP8, and sliding window attention.
gguf-quantization
GGUF format and llama.cpp quantization for efficient CPU/GPU inference. Use when deploying models on consumer hardware, Apple Silicon, or when needing flexible quantization from 2-8 bit without GPU requirements.
gptq
Post-training 4-bit quantization for LLMs with minimal accuracy loss. Use for deploying large models (70B, 405B) on consumer GPUs, when you need 4× memory reduction with <2% perplexity degradation, or for faster inference (3-4× speedup) vs FP16. Integrates with transformers and PEFT for QLoRA fine-tuning.
hqq-quantization
Half-Quadratic Quantization for LLMs without calibration data. Use when quantizing models to 4/3/2-bit precision without needing calibration datasets, for fast quantization workflows, or when deploying with vLLM or HuggingFace Transformers.
parallel-agents
Multi-agent orchestration patterns. Use when multiple independent tasks can run with different domain expertise or when comprehensive analysis requires multiple perspectives.
perplexity
Web search and research using Perplexity AI. Use when user says "search", "find", "look up", "ask", "research", or "what's the latest" for generic queries. NOT for library/framework docs (use Context7) or workspace questions.
miles-rl-training
Provides guidance for enterprise-grade RL training using miles, a production-ready fork of slime. Use when training large MoE models with FP8/INT4, needing train-inference alignment, or requiring speculative RL for maximum throughput.
openrlhf-training
High-performance RLHF framework with Ray+vLLM acceleration. Use for PPO, GRPO, RLOO, DPO training of large models (7B-70B+). Built on Ray, vLLM, ZeRO-3. 2× faster than DeepSpeedChat with distributed architecture and GPU resource sharing.
simpo-training
Simple Preference Optimization for LLM alignment. Reference-free alternative to DPO with better performance (+6.4 points on AlpacaEval 2.0). No reference model needed, more efficient than DPO. Use for preference alignment when want simpler, faster training than DPO/PPO.
slime-rl-training
Provides guidance for LLM post-training with RL using slime, a Megatron+SGLang framework. Use when training GLM models, implementing custom data generation workflows, or needing tight Megatron-LM integration for RL scaling.
torchforge-rl-training
Provides guidance for PyTorch-native agentic RL using torchforge, Meta's library separating infra from algorithms. Use when you want clean RL abstractions, easy algorithm experimentation, or scalable training with Monarch and TorchTitan.
fine-tuning-with-trl
Fine-tune LLMs using reinforcement learning with TRL - SFT for instruction tuning, DPO for preference alignment, PPO/GRPO for reward optimization, and reward model training. Use when need RLHF, align model with preferences, or train from human feedback. Works with HuggingFace Transformers.
verl-rl-training
Provides guidance for training LLMs with reinforcement learning using verl (Volcano Engine RL). Use when implementing RLHF, GRPO, PPO, or other RL algorithms for LLM post-training at scale with flexible infrastructure backends.
prompt-caching
Caching strategies for LLM prompts including Anthropic prompt caching, response caching, and CAG (Cache Augmented Generation) Use when: prompt caching, cache prompt, response cache, cag, cache augmented.
prompt-engineer
Expert in designing effective prompts for LLM-powered applications. Masters prompt structure, context management, output formatting, and prompt evaluation. Use when: prompt engineering, system prompt, few-shot, chain of thought, prompt design.
dspy
Build complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
guidance
Control LLM output with regex and grammars, guarantee valid JSON/XML/code generation, enforce structured formats, and build multi-step workflows with Guidance - Microsoft Research's constrained generation framework
instructor
Extract structured data from LLM responses with Pydantic validation, retry failed extractions automatically, parse complex JSON with type safety, and stream partial results with Instructor - battle-tested structured output library
outlines
Guarantee valid JSON/XML/code structure during generation, use Pydantic models for type-safe outputs, support local models (Transformers, vLLM), and maximize inference speed with Outlines - dottxt.ai's structured generation library
prompt-engineering
Expert guide on prompt engineering patterns, best practices, and optimization techniques. Use when user wants to improve prompts, learn prompting strategies, or debug agent behavior.
prompt-library
Curated collection of high-quality prompts for various use cases. Includes role-based prompts, task-specific templates, and prompt refinement techniques. Use when user needs prompt templates, role-play prompts, or ready-to-use prompt examples for coding, writing, analysis, or creative tasks.
qa-test-planner
Generate comprehensive test plans, manual test cases, regression test suites, and bug reports for QA engineers. Includes Figma MCP integration for design validation.
chroma
Open-source embedding database for AI applications. Store embeddings and metadata, perform vector and full-text search, filter by metadata. Simple 4-function API. Scales from notebooks to production clusters. Use for semantic search, RAG applications, or document retrieval. Best for local development and open-source projects.
rag-engineer
Expert in building Retrieval-Augmented Generation systems. Masters embedding models, vector databases, chunking strategies, and retrieval optimization for LLM applications. Use when: building RAG, vector search, embeddings, semantic search, document retrieval.
faiss
Facebook's library for efficient similarity search and clustering of dense vectors. Supports billions of vectors, GPU acceleration, and various index types (Flat, IVF, HNSW). Use for fast k-NN search, large-scale vector retrieval, or when you need pure similarity search without metadata. Best for high-performance applications.
rag-implementation
Retrieval-Augmented Generation patterns including chunking, embeddings, vector stores, and retrieval optimization Use when: rag, retrieval augmented, vector search, embeddings, semantic search.
pinecone
Managed vector database for production AI applications. Fully managed, auto-scaling, with hybrid search (dense + sparse), metadata filtering, and namespaces. Low latency (<100ms p95). Use for production RAG, recommendation systems, or semantic search at scale. Best for serverless, managed infrastructure.
qdrant-vector-search
High-performance vector similarity search engine for RAG and semantic search. Use when building production RAG systems requiring fast nearest neighbor search, hybrid search with filtering, or scalable vector storage with Rust-powered performance.
sentence-transformers
Framework for state-of-the-art sentence, text, and image embeddings. Provides 5000+ pre-trained models for semantic similarity, clustering, and retrieval. Supports multilingual, domain-specific, and multimodal models. Use for generating embeddings for RAG, semantic search, or similarity tasks. Best for production embedding generation.
research-engineer
An uncompromising Academic Research Engineer. Operates with absolute scientific rigor, objective criticism, and zero flair. Focuses on theoretical correctness, formal verification, and optimal implementation across any required technology.
constitutional-ai
Anthropic's method for training harmless AI through self-improvement. Two-phase approach - supervised learning with self-critique/revision, then RLAIF (RL from AI Feedback). Use for safety alignment, reducing harmful outputs without human labels. Powers Claude's safety system.
llamaguard
Meta's 7-8B specialized moderation model for LLM input/output filtering. 6 safety categories - violence/hate, sexual content, weapons, substances, self-harm, criminal planning. 94-95% accuracy. Deploy with vLLM, HuggingFace, Sagemaker. Integrates with NeMo Guardrails.
nemo-guardrails
NVIDIA's runtime safety framework for LLM applications. Features jailbreak detection, input/output validation, fact-checking, hallucination detection, PII filtering, toxicity detection. Uses Colang 2.0 DSL for programmable rails. Production-ready, runs on T4 GPU.
huggingface-tokenizers
Fast tokenizers optimized for research and production. Rust-based implementation tokenizes 1GB in <20 seconds. Supports BPE, WordPiece, and Unigram algorithms. Train custom vocabularies, track alignments, handle padding/truncation. Integrates seamlessly with transformers. Use when you need high-performance tokenization or custom tokenizer training.
sentencepiece
Language-independent tokenizer treating text as raw Unicode. Supports BPE and Unigram algorithms. Fast (50k sentences/sec), lightweight (6MB memory), deterministic vocabulary. Used by T5, ALBERT, XLNet, mBART. Train on raw text without pre-tokenization. Use when you need multilingual support, CJK languages, or reproducible tokenization.
voice-agents
Voice agents represent the frontier of AI interaction - humans speaking naturally with AI systems. The challenge isn't just speech recognition and synthesis, it's achieving natural conversation flow with sub-800ms latency while handling interruptions, background noise, and emotional nuance. This skill covers two architectures: speech-to-speech (OpenAI Realtime API, lowest latency, most natural) and pipeline (STT→LLM→TTS, more control, easier to debug). Key insight: latency is the constraint. Hu
voice-ai-development
Expert in building voice AI applications - from real-time voice agents to voice-enabled apps. Covers OpenAI Realtime API, Vapi for voice agents, Deepgram for transcription, ElevenLabs for synthesis, LiveKit for real-time infrastructure, and WebRTC fundamentals. Knows how to build low-latency, production-ready voice experiences. Use when: voice ai, voice agent, speech to text, text to speech, realtime voice.
google-analytics
Analyze Google Analytics data, review website performance metrics, identify traffic patterns, and suggest data-driven improvements. Use when the user asks about analytics, website metrics, traffic analysis, conversion rates, user behavior, or performance optimization.
ab-test-setup
When the user wants to plan, design, or implement an A/B test or experiment. Also use when the user mentions "A/B test," "split test," "experiment," "test this change," "variant copy," "multivariate test," or "hypothesis." For tracking implementation, see analytics-tracking.
agile-product-owner
Agile product ownership toolkit for Senior Product Owner including INVEST-compliant user story generation, sprint planning, backlog management, and velocity tracking. Use for story writing, sprint planning, stakeholder communication, and agile ceremonies.
ai-product
Every product will be AI-powered. The question is whether you'll build it right or ship a demo that falls apart in production. This skill covers LLM integration patterns, RAG architecture, prompt engineering that scales, AI UX that users trust, and cost optimization that doesn't bankrupt you. Use when: keywords, file_patterns, code_patterns.
ai-wrapper-product
Expert in building products that wrap AI APIs (OpenAI, Anthropic, etc.) into focused tools people will pay for. Not just 'ChatGPT but different' - products that solve specific problems with AI. Covers prompt engineering for products, cost management, rate limiting, and building defensible AI businesses. Use when: AI wrapper, GPT product, AI tool, wrap AI, AI SaaS.
analytics-tracking
When the user wants to set up, improve, or audit analytics tracking and measurement. Also use when the user mentions "set up tracking," "GA4," "Google Analytics," "conversion tracking," "event tracking," "UTM parameters," "tag manager," "GTM," "analytics implementation," or "tracking plan." For A/B test measurement, see ab-test-setup.
ceo-advisor
Executive leadership guidance for strategic decision-making, organizational development, and stakeholder management. Includes strategy analyzer, financial scenario modeling, board governance frameworks, and investor relations playbooks. Use when planning strategy, preparing board presentations, managing investors, developing organizational culture, making executive decisions, or when user mentions CEO, strategic planning, board meetings, investor updates, organizational leadership, or executive strategy.
competitive-ads-extractor
Extracts and analyzes competitors' ads from ad libraries (Facebook, LinkedIn, etc.) to understand what messaging, problems, and creative approaches are working. Helps inspire and improve your own ad campaigns.
competitor-alternatives
When the user wants to create competitor comparison or alternative pages for SEO and sales enablement. Also use when the user mentions 'alternative page,' 'vs page,' 'competitor comparison,' 'comparison page,' '[Product] vs [Product],' '[Product] alternative,' or 'competitive landing pages.' Covers four formats: singular alternative, plural alternatives, you vs competitor, and competitor vs competitor. Emphasizes deep research, modular content architecture, and varied section types beyond feature tables.
content-creator
Create SEO-optimized marketing content with consistent brand voice. Includes brand voice analyzer, SEO optimizer, content frameworks, and social media templates. Use when writing blog posts, creating social media content, analyzing brand voice, optimizing SEO, planning content calendars, or when user mentions content creation, brand voice, SEO optimization, social media marketing, or content strategy.
copywriting
When the user wants to write, rewrite, or improve marketing copy for any page — including homepage, landing pages, pricing pages, feature pages, about pages, or product pages. Also use when the user says "write copy for," "improve this copy," "rewrite this page," "marketing copy," "headline help," or "CTA copy." For email copy, see email-sequence. For popup copy, see popup-cro.
Page 3 of 8 · 398 results