Back to authors
K-Dense-AI

K-Dense-AI

135 Skills published on GitHub.

esm

Comprehensive toolkit for protein language models including ESM3 (generative multimodal protein design across sequence, structure, and function) and ESM C (efficient protein embeddings and representations). Use this skill when working with protein sequences, structures, or function prediction; designing novel proteins; generating protein embeddings; performing inverse folding; or conducting protein engineering tasks. Supports both local model usage and cloud-based Forge API for scalable inference.

UncategorizedView skill →

etetoolkit

Phylogenetic tree toolkit (ETE). Tree manipulation (Newick/NHX), evolutionary event detection, orthology/paralogy, NCBI taxonomy, visualization (PDF/SVG), for phylogenomics.

UncategorizedView skill →

exploratory-data-analysis

Perform comprehensive exploratory data analysis on scientific data files across 200+ file formats. This skill should be used when analyzing any scientific data file to understand its structure, content, quality, and characteristics. Automatically detects file type and generates detailed markdown reports with format-specific analysis, quality metrics, and downstream analysis recommendations. Covers chemistry, bioinformatics, microscopy, spectroscopy, proteomics, metabolomics, and general scientific data formats.

UncategorizedView skill →

fda-database

Query openFDA API for drugs, devices, adverse events, recalls, regulatory submissions (510k, PMA), substance identification (UNII), for FDA regulatory data analysis and safety research.

UncategorizedView skill →

flowio

Parse FCS (Flow Cytometry Standard) files v2.0-3.1. Extract events as NumPy arrays, read metadata/channels, convert to CSV/DataFrame, for flow cytometry data preprocessing.

UncategorizedView skill →

fluidsim

Framework for computational fluid dynamics simulations using Python. Use when running fluid dynamics simulations including Navier-Stokes equations (2D/3D), shallow water equations, stratified flows, or when analyzing turbulence, vortex dynamics, or geophysical flows. Provides pseudospectral methods with FFT, HPC support, and comprehensive output analysis.

UncategorizedView skill →

gene-database

Query NCBI Gene via E-utilities/Datasets API. Search by symbol/ID, retrieve gene info (RefSeqs, GO, locations, phenotypes), batch lookups, for gene annotation and functional analysis.

UncategorizedView skill →

generate-image

Generate or edit images using AI models (FLUX, Gemini). Use for general-purpose image generation including photos, illustrations, artwork, visual assets, concept art, and any image that isn't a technical diagram or schematic. For flowcharts, circuits, pathways, and technical diagrams, use the scientific-schematics skill instead.

UncategorizedView skill →

geniml

This skill should be used when working with genomic interval data (BED files) for machine learning tasks. Use for training region embeddings (Region2Vec, BEDspace), single-cell ATAC-seq analysis (scEmbed), building consensus peaks (universes), or any ML-based analysis of genomic regions. Applies to BED file collections, scATAC-seq data, chromatin accessibility datasets, and region-based genomic feature learning.

UncategorizedView skill →

geo-database

Access NCBI GEO for gene expression/genomics data. Search/download microarray and RNA-seq datasets (GSE, GSM, GPL), retrieve SOFT/Matrix files, for transcriptomics and expression analysis.

UncategorizedView skill →

geopandas

Python library for working with geospatial vector data including shapefiles, GeoJSON, and GeoPackage files. Use when working with geographic data for spatial analysis, geometric operations, coordinate transformations, spatial joins, overlay operations, choropleth mapping, or any task involving reading/writing/analyzing vector geographic data. Supports PostGIS databases, interactive maps, and integration with matplotlib/folium/cartopy. Use for tasks like buffer analysis, spatial joins between datasets, dissolving boundaries, clipping data, calculating areas/distances, reprojecting coordinate systems, creating maps, or converting between spatial file formats.

UncategorizedView skill →

get-available-resources

This skill should be used at the start of any computationally intensive scientific task to detect and report available system resources (CPU cores, GPUs, memory, disk space). It creates a JSON file with resource information and strategic recommendations that inform computational approach decisions such as whether to use parallel processing (joblib, multiprocessing), out-of-core computing (Dask, Zarr), GPU acceleration (PyTorch, JAX), or memory-efficient strategies. Use this skill before running analyses, training models, processing large datasets, or any task where resource constraints matter.

UncategorizedView skill →

gget

CLI/Python toolkit for rapid bioinformatics queries. Preferred for quick BLAST searches. Access to 20+ databases: gene info (Ensembl/UniProt), AlphaFold, ARCHS4, Enrichr, OpenTargets, COSMIC, genome downloads. For advanced BLAST/batch processing, use biopython. For multi-database integration, use bioservices.

UncategorizedView skill →

histolab

Digital pathology image processing toolkit for whole slide images (WSI). Use this skill when working with histopathology slides, processing H&E or IHC stained tissue images, extracting tiles from gigapixel pathology images, detecting tissue regions, segmenting tissue masks, or preparing datasets for computational pathology deep learning pipelines. Applies to WSI formats (SVS, TIFF, NDPI), tile-based analysis, and histological image preprocessing workflows.

UncategorizedView skill →

hmdb-database

Access Human Metabolome Database (220K+ metabolites). Search by name/ID/structure, retrieve chemical properties, biomarker data, NMR/MS spectra, pathways, for metabolomics and identification.

UncategorizedView skill →

hypogenic

Automated hypothesis generation and testing using large language models. Use this skill when generating scientific hypotheses from datasets, combining literature insights with empirical data, testing hypotheses against observational data, or conducting systematic hypothesis exploration for research discovery in domains like deception detection, AI content detection, mental health analysis, or other empirical research tasks.

UncategorizedView skill →

hypothesis-generation

Generate testable hypotheses. Formulate from observations, design experiments, explore competing explanations, develop predictions, propose mechanisms, for scientific inquiry across domains.

UncategorizedView skill →

iso-13485-certification

Comprehensive toolkit for preparing ISO 13485 certification documentation for medical device Quality Management Systems. Use when users need help with ISO 13485 QMS documentation, including (1) conducting gap analysis of existing documentation, (2) creating Quality Manuals, (3) developing required procedures and work instructions, (4) preparing Medical Device Files, (5) understanding ISO 13485 requirements, or (6) identifying missing documentation for medical device certification. Also use when users mention medical device regulations, QMS certification, FDA QMSR, EU MDR, or need help with quality system documentation.

UncategorizedView skill →

Page 3 of 8 · 135 results