ena-database
Access European Nucleotide Archive via API/FTP. Retrieve DNA/RNA sequences, raw reads (FASTQ), genome assemblies by accession, for genomics and bioinformatics pipelines. Supports multiple formats.
dnanexus-integration
DNAnexus cloud genomics platform. Build apps/applets, manage data (upload/download), dxpy Python SDK, run workflows, FASTQ/BAM/VCF, for genomics pipeline development and execution.
ensembl-database
Query Ensembl genome database REST API for 250+ species. Gene lookups, sequence retrieval, variant analysis, comparative genomics, orthologs, VEP predictions, for genomic research.
gwas-database
Query NHGRI-EBI GWAS Catalog for SNP-trait associations. Search variants by rs ID, disease/trait, gene, retrieve p-values and summary statistics, for genetic epidemiology and polygenic risk scores.
geo-database
Access NCBI GEO for gene expression/genomics data. Search/download microarray and RNA-seq datasets (GSE, GSM, GPL), retrieve SOFT/Matrix files, for transcriptomics and expression analysis.
gene-database
Query NCBI Gene via E-utilities/Datasets API. Search by symbol/ID, retrieve gene info (RefSeqs, GO, locations, phenotypes), batch lookups, for gene annotation and functional analysis.
string-database
Query STRING API for protein-protein interactions (59M proteins, 20B interactions). Network analysis, GO/KEGG enrichment, interaction discovery, 5000+ species, for systems biology.
pyopenms
Python interface to OpenMS for mass spectrometry data analysis. Use for LC-MS/MS proteomics and metabolomics workflows including file handling (mzML, mzXML, mzTab, FASTA, pepXML, protXML, mzIdentML), signal processing, feature detection, peptide identification, and quantitative analysis. Apply when working with mass spectrometry data, analyzing proteomics experiments, or processing metabolomics datasets.
pathml
Computational pathology toolkit for analyzing whole-slide images (WSI) and multiparametric imaging data. Use this skill when working with histopathology slides, H&E stained images, multiplex immunofluorescence (CODEX, Vectra), spatial proteomics, nucleus detection/segmentation, tissue graph construction, or training ML models on pathology data. Supports 160+ slide formats including Aperio SVS, NDPI, DICOM, OME-TIFF for digital pathology workflows.
cosmic-database
Access COSMIC cancer mutation database. Query somatic mutations, Cancer Gene Census, mutational signatures, gene fusions, for cancer research and precision oncology. Requires authentication.
cobrapy
Constraint-based metabolic modeling (COBRA). FBA, FVA, gene knockouts, flux sampling, SBML models, for systems biology and metabolic engineering analysis.
datamol
Pythonic wrapper around RDKit with simplified interface and sensible defaults. Preferred for standard drug discovery: SMILES parsing, standardization, descriptors, fingerprints, clustering, 3D conformers, parallel processing. Returns native rdkit.Chem.Mol objects. For advanced control or custom parameters, use rdkit directly.
cellxgene-census
Query CZ CELLxGENE Census (61M+ cells). Filter by cell type/tissue/disease, retrieve expression data, integrate with scanpy/PyTorch, for population-scale single-cell analysis.
chembl-database
Query ChEMBL's bioactive molecules and drug discovery data. Search compounds by structure/properties, retrieve bioactivity data (IC50, Ki), find inhibitors, perform SAR studies, for medicinal chemistry.
clinpgx-database
Access ClinPGx pharmacogenomics data (successor to PharmGKB). Query gene-drug interactions, CPIC guidelines, allele functions, for precision medicine and genotype-guided dosing decisions.
arboreto
Infer gene regulatory networks (GRNs) from gene expression data using scalable algorithms (GRNBoost2, GENIE3). Use when analyzing transcriptomics data (bulk RNA-seq, single-cell RNA-seq) to identify transcription factor-target gene relationships and regulatory interactions. Supports distributed computation for large-scale datasets.
biopython
Primary Python toolkit for molecular biology. Preferred for Python-based PubMed/NCBI queries (Bio.Entrez), sequence manipulation, file parsing (FASTA, GenBank, FASTQ, PDB), advanced BLAST workflows, structures, phylogenetics. For quick BLAST, use gget. For direct REST API, use pubmed-database.
anndata
This skill should be used when working with annotated data matrices in Python, particularly for single-cell genomics analysis, managing experimental measurements with metadata, or handling large-scale biological datasets. Use when tasks involve AnnData objects, h5ad files, single-cell RNA-seq data, or integration with scanpy/scverse tools.
Page 3 of 8 · 143 results