motif-scanning
This skill identifies the locations of known transcription factor (TF) binding motifs within genomic regions such as ChIP-seq or ATAC-seq peaks. It utilizes HOMER to search for specific sequence motifs defined by position-specific scoring matrices (PSSMs) from known motif databases. Use this skill when you need to detect the presence and precise genomic coordinates of known TF binding motifs within experimentally defined regions such as ChIP-seq or ATAC-seq peaks.
hic-matrix-qc
This skill performs standardized quality control (QC) on Hi-C contact matrices stored in .mcool or .cool format. It computes coverage and cis/trans ratios, distance-dependent contact decay (P(s) curves), coverage uniformity, and replicate correlation at a chosen resolution using cooler and cooltools. Use it to assess whether Hi-C data are of sufficient quality for downstream analyses such as TAD calling, loop detection, and compartment analysis.
TF-differential-binding
The TF-differential-binding pipeline performs differential transcription factor (TF) binding analysis from ChIP-seq datasets (TF peaks) using the DiffBind package in R. It identifies genomic regions where TF binding intensity significantly differs between experimental conditions (e.g., treatment vs. control, mutant vs. wild-type). Use the TF-differential-binding pipeline when you need to analyze the different function of the same TF across two or more biological conditions, cell types, or treatments using ChIP-seq data or TF binding peaks. This pipeline is ideal for studying regulatory mechanisms that underlie transcriptional differences or epigenetic responses to perturbations.
single-cell-rna-qc
Performs quality control on single-cell RNA-seq data (.h5ad or .h5 files) using scverse best practices with MAD-based filtering and comprehensive visualizations. Use when users request QC analysis, filtering low-quality cells, assessing data quality, or following scverse/scanpy best practices for single-cell analysis.
editing-obo-ontologies
Skills and tools for editing OBO format ontologies, including querying terms, checking out/checking in individual terms, and following OBO format conventions. Do not use this if the source for the ontology you are editing is not in obo format (e.g. ofn)
ontology-access-kit
Skills for querying ontologies using the Ontology Access Kit (OAK). This should only be used for complex ontology operations, for basic external ontology searching use the OLS MCP
lobster-bioinformatics
Run bioinformatics analyses using Lobster AI - single-cell RNA-seq, bulk RNA-seq, literature mining, dataset discovery, quality control, and visualization. Use when analyzing genomics data, searching for papers/datasets, or working with H5AD, CSV, GEO/SRA accessions, or biological data. Requires lobster-ai package installed.
single-cell-rna-qc
Performs quality control on single-cell RNA-seq data (.h5ad or .h5 files) using scverse best practices with MAD-based filtering and comprehensive visualizations. Use when users request QC analysis, filtering low-quality cells, assessing data quality, or following scverse/scanpy best practices for single-cell analysis.
nf-core
Run nf-core bioinformatics pipelines (rnaseq, sarek, atacseq) on sequencing data. Use when analyzing RNA-seq, WGS/WES, or ATAC-seq data—either local FASTQs or public datasets from GEO/SRA. Triggers on nf-core, Nextflow, FASTQ analysis, variant calling, gene expression, differential expression, GEO reanalysis, GSE/GSM/SRR accessions, or samplesheet creation.
beads
>
string-database
Query STRING API for protein-protein interactions (59M proteins, 20B interactions). Network analysis, GO/KEGG enrichment, interaction discovery, 5000+ species, for systems biology.
torchdrug
Graph-based drug discovery toolkit. Molecular property prediction (ADMET), protein modeling, knowledge graph reasoning, molecular generation, retrosynthesis, GNNs (GIN, GAT, SchNet), 40+ datasets, for PyTorch-based ML on molecules, proteins, and biomedical graphs.
uniprot-database
Direct REST API access to UniProt. Protein searches, FASTA retrieval, ID mapping, Swiss-Prot/TrEMBL. For Python workflows with multiple databases, prefer bioservices (unified interface to 40+ services). Use this for direct HTTP/REST work or UniProt-specific control.
scvi-tools
This skill should be used when working with single-cell omics data analysis using scvi-tools, including scRNA-seq, scATAC-seq, CITE-seq, spatial transcriptomics, and other single-cell modalities. Use this skill for probabilistic modeling, batch correction, dimensionality reduction, differential expression, cell type annotation, multimodal integration, and spatial analysis tasks.
zinc-database
Access ZINC (230M+ purchasable compounds). Search by ZINC ID/SMILES, similarity searches, 3D-ready structures for docking, analog discovery, for virtual screening and drug discovery.
ena-database
Access European Nucleotide Archive via API/FTP. Retrieve DNA/RNA sequences, raw reads (FASTQ), genome assemblies by accession, for genomics and bioinformatics pipelines. Supports multiple formats.
etetoolkit
Phylogenetic tree toolkit (ETE). Tree manipulation (Newick/NHX), evolutionary event detection, orthology/paralogy, NCBI taxonomy, visualization (PDF/SVG), for phylogenomics.
flowio
Parse FCS (Flow Cytometry Standard) files v2.0-3.1. Extract events as NumPy arrays, read metadata/channels, convert to CSV/DataFrame, for flow cytometry data preprocessing.
Page 6 of 8 · 143 results