context-degradation
This skill should be used when the user asks to "diagnose context problems", "fix lost-in-middle issues", "debug agent failures", "understand context poisoning", or mentions context degradation, attention patterns, context clash, context confusion, or agent performance degradation. Provides patterns for recognizing and mitigating context failures.
project-development
This skill should be used when the user asks to "start an LLM project", "design batch pipeline", "evaluate task-model fit", "structure agent project", or mentions pipeline architecture, agent-assisted development, cost estimation, or choosing between LLM and traditional approaches.
advanced-evaluation
This skill should be used when the user asks to "implement LLM-as-judge", "compare model outputs", "create evaluation rubrics", "mitigate evaluation bias", or mentions direct scoring, pairwise comparison, position bias, evaluation pipelines, or automated quality assessment.
context-fundamentals
This skill should be used when the user asks to "understand context", "explain context windows", "design agent architecture", "debug context issues", "optimize context usage", or discusses context components, attention mechanics, progressive disclosure, or context budgeting. Provides foundational understanding of context engineering for AI agent systems.
ai-sdk-v6
Guide for building AI-powered applications using the Vercel AI SDK v6. Use when developing with generateText, streamText, useChat, tool calling, agents, structured output generation, MCP integration, or any LLM-powered features in TypeScript/JavaScript applications. Covers React, Next.js, Vue, Svelte, and Node.js implementations.
transformers
This skill should be used when working with pre-trained transformer models for natural language processing, computer vision, audio, or multimodal tasks. Use for text generation, classification, question answering, translation, summarization, image classification, object detection, speech recognition, and fine-tuning models on custom datasets.
scikit-survival
Comprehensive toolkit for survival analysis and time-to-event modeling in Python using scikit-survival. Use this skill when working with censored survival data, performing time-to-event analysis, fitting Cox models, Random Survival Forests, Gradient Boosting models, or Survival SVMs, evaluating survival predictions with concordance index or Brier score, handling competing risks, or implementing any survival analysis workflow with the scikit-survival library.
torch-geometric
Graph Neural Networks (PyG). Node/graph classification, link prediction, GCN, GAT, GraphSAGE, heterogeneous graphs, molecular property prediction, for geometric deep learning.
torchdrug
Graph-based drug discovery toolkit. Molecular property prediction (ADMET), protein modeling, knowledge graph reasoning, molecular generation, retrosynthesis, GNNs (GIN, GAT, SchNet), 40+ datasets, for PyTorch-based ML on molecules, proteins, and biomedical graphs.
vaex
Use this skill for processing and analyzing large tabular datasets (billions of rows) that exceed available RAM. Vaex excels at out-of-core DataFrame operations, lazy evaluation, fast aggregations, efficient visualization of big data, and machine learning on large datasets. Apply when users need to work with large CSV/HDF5/Arrow/Parquet files, perform fast statistics on massive datasets, create visualizations of big data, or build ML pipelines that don't fit in memory.
umap-learn
UMAP dimensionality reduction. Fast nonlinear manifold learning for 2D/3D visualization, clustering preprocessing (HDBSCAN), supervised/parametric UMAP, for high-dimensional data.
shap
Model interpretability and explainability using SHAP (SHapley Additive exPlanations). Use this skill when explaining machine learning model predictions, computing feature importance, generating SHAP plots (waterfall, beeswarm, bar, scatter, force, heatmap), debugging models, analyzing model bias or fairness, comparing models, or implementing explainable AI. Works with tree-based models (XGBoost, LightGBM, Random Forest), deep learning (TensorFlow, PyTorch), linear models, and any black-box model.
stable-baselines3
Use this skill for reinforcement learning tasks including training RL agents (PPO, SAC, DQN, TD3, DDPG, A2C, etc.), creating custom Gym environments, implementing callbacks for monitoring and control, using vectorized environments for parallel training, and integrating with deep RL workflows. This skill should be used when users request RL algorithm implementation, agent training, environment design, or RL experimentation.
scvi-tools
This skill should be used when working with single-cell omics data analysis using scvi-tools, including scRNA-seq, scATAC-seq, CITE-seq, spatial transcriptomics, and other single-cell modalities. Use this skill for probabilistic modeling, batch correction, dimensionality reduction, differential expression, cell type annotation, multimodal integration, and spatial analysis tasks.
pytdc
Therapeutics Data Commons. AI-ready drug discovery datasets (ADME, toxicity, DTI), benchmarks, scaffold splits, molecular oracles, for therapeutic ML and pharmacological prediction.
esm
Comprehensive toolkit for protein language models including ESM3 (generative multimodal protein design across sequence, structure, and function) and ESM C (efficient protein embeddings and representations). Use this skill when working with protein sequences, structures, or function prediction; designing novel proteins; generating protein embeddings; performing inverse folding; or conducting protein engineering tasks. Supports both local model usage and cloud-based Forge API for scalable inference.
scikit-learn
Machine learning in Python with scikit-learn. Use when working with supervised learning (classification, regression), unsupervised learning (clustering, dimensionality reduction), model evaluation, hyperparameter tuning, preprocessing, or building ML pipelines. Provides comprehensive reference documentation for algorithms, preprocessing techniques, pipelines, and best practices.
pufferlib
This skill should be used when working with reinforcement learning tasks including high-performance RL training, custom environment development, vectorized parallel simulation, multi-agent systems, or integration with existing RL environments (Gymnasium, PettingZoo, Atari, Procgen, etc.). Use this skill for implementing PPO training, creating PufferEnv environments, optimizing RL performance, or developing policies with CNNs/LSTMs.
Page 4 of 5 · 87 results