pyhealth
Comprehensive healthcare AI toolkit for developing, testing, and deploying machine learning models with clinical data. This skill should be used when working with electronic health records (EHR), clinical prediction tasks (mortality, readmission, drug recommendation), medical coding systems (ICD, NDC, ATC), physiological signals (EEG, ECG), healthcare datasets (MIMIC-III/IV, eICU, OMOP), or implementing deep learning models for healthcare applications (RETAIN, SafeDrug, Transformer, GNN).
perplexity-search
Perform AI-powered web searches with real-time information using Perplexity models via LiteLLM and OpenRouter. This skill should be used when conducting web searches for current information, finding recent scientific literature, getting grounded answers with source citations, or accessing information beyond the model's knowledge cutoff. Provides access to multiple Perplexity models including Sonar Pro, Sonar Pro Search (advanced agentic search), and Sonar Reasoning Pro through a single OpenRouter API key.
pennylane
Cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Enables building and training quantum circuits with automatic differentiation, seamless integration with PyTorch/JAX/TensorFlow, and device-independent execution across simulators and quantum hardware (IBM, Amazon Braket, Google, Rigetti, IonQ, etc.). Use when working with quantum circuits, variational quantum algorithms (VQE, QAOA), quantum neural networks, hybrid quantum-classical models, molecular simulations, quantum chemistry calculations, or any quantum computing tasks requiring gradient-based optimization, hardware-agnostic programming, or quantum machine learning workflows.
pathml
Computational pathology toolkit for analyzing whole-slide images (WSI) and multiparametric imaging data. Use this skill when working with histopathology slides, H&E stained images, multiplex immunofluorescence (CODEX, Vectra), spatial proteomics, nucleus detection/segmentation, tissue graph construction, or training ML models on pathology data. Supports 160+ slide formats including Aperio SVS, NDPI, DICOM, OME-TIFF for digital pathology workflows.
modal
Run Python code in the cloud with serverless containers, GPUs, and autoscaling. Use when deploying ML models, running batch processing jobs, scheduling compute-intensive tasks, or serving APIs that require GPU acceleration or dynamic scaling.
molfeat
Molecular featurization for ML (100+ featurizers). ECFP, MACCS, descriptors, pretrained models (ChemBERTa), convert SMILES to features, for QSAR and molecular ML.
aeon
This skill should be used for time series machine learning tasks including classification, regression, clustering, forecasting, anomaly detection, segmentation, and similarity search. Use when working with temporal data, sequential patterns, or time-indexed observations requiring specialized algorithms beyond standard ML approaches. Particularly suited for univariate and multivariate time series analysis with scikit-learn compatible APIs.
deepchem
Molecular machine learning toolkit. Property prediction (ADMET, toxicity), GNNs (GCN, MPNN), MoleculeNet benchmarks, pretrained models, featurization, for drug discovery ML.
diffdock
Diffusion-based molecular docking. Predict protein-ligand binding poses from PDB/SMILES, confidence scores, virtual screening, for structure-based drug design. Not for affinity prediction.
geniml
This skill should be used when working with genomic interval data (BED files) for machine learning tasks. Use for training region embeddings (Region2Vec, BEDspace), single-cell ATAC-seq analysis (scEmbed), building consensus peaks (universes), or any ML-based analysis of genomic regions. Applies to BED file collections, scATAC-seq data, chromatin accessibility datasets, and region-based genomic feature learning.
generate-image
Generate or edit images using AI models (FLUX, Gemini). Use for general-purpose image generation including photos, illustrations, artwork, visual assets, concept art, and any image that isn't a technical diagram or schematic. For flowcharts, circuits, pathways, and technical diagrams, use the scientific-schematics skill instead.
histolab
Digital pathology image processing toolkit for whole slide images (WSI). Use this skill when working with histopathology slides, processing H&E or IHC stained tissue images, extracting tiles from gigapixel pathology images, detecting tissue regions, segmenting tissue masks, or preparing datasets for computational pathology deep learning pipelines. Applies to WSI formats (SVS, TIFF, NDPI), tile-based analysis, and histological image preprocessing workflows.
hypogenic
Automated hypothesis generation and testing using large language models. Use this skill when generating scientific hypotheses from datasets, combining literature insights with empirical data, testing hypotheses against observational data, or conducting systematic hypothesis exploration for research discovery in domains like deception detection, AI content detection, mental health analysis, or other empirical research tasks.
meeting-insights-analyzer
Analyzes meeting transcripts and recordings to uncover behavioral patterns, communication insights, and actionable feedback. Identifies when you avoid conflict, use filler words, dominate conversations, or miss opportunities to listen. Perfect for professionals seeking to improve their communication and leadership skills.
file-organizer
Intelligently organizes your files and folders across your computer by understanding context, finding duplicates, suggesting better structures, and automating cleanup tasks. Reduces cognitive load and keeps your digital workspace tidy without manual effort.
Page 5 of 5 · 87 results